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Crosswind Smear and Pointwise Errors in 
Streamline Diffusion Finite Element Methods 

By C. Johnson, A. H. Schatz, and L. B. Wahlbin* 

Abstract. For a model convection-dominated singularly perturbed convection-diffusion prob- 
lem, it is shown that crosswind smear in the numerical streamline diffusion finite element 
method is minimized by introducing a judicious amount of artificial crosswind diffusion. The 
ensuing method with piecewise linear elements converges with a pointwise accuracy of almost 
h 5/4 under local smoothness assumptions. 

1. Introduction. The streamline diffusion method is a finite element method for 
convection-dominated convection-diffusion problems which combines formal high 
accuracy with decent stability properties. The method was introduced in the case of 
stationary problems by Hughes and Brooks [7], cf. Raithby and Torrance [14] and 
Wahlbin [15] for earlier thoughts in this direction. The mathematical analysis of the 
method was started in Johnson and Navert [8] and continued with extensions to, 
e.g., time-dependent problems in Navert [12], Johnson, Navert and Pitkaranta [9] 
and Johnson and Saranen [10]. In these papers local error estimates in L2 of order 
O(h k 1/2), in regions of smoothness, with piecewise polynomial finite elements of 
degree k, were derived, together with estimates stating, as a typical example, that in 
the zero diffusion limit a sharp discontinuity in the exact solution across a streamline 
will be captured in a numerical crosswind layer of width 0(h1/2), essentially. 

The purpose of the present paper is first to improve the result just mentioned on 
numerical crosswind smear to 0(h3/4). The improvement from 0(h1/2) to 0(h3/4) 

is obtained by adding a small amount, 0(h3/2), of artificial crosswind diffusion to 
the method. In the piecewise linear case (k = 1) this does not destroy the known 
O( h3/2) accuracy in L2 in smooth regions. Using our first result, we then obtain our 
second main result, localized pointwise error estimates of order 0(h5/4) in regions of 
smoothness. (The previously known best pointwise error estimate in the piecewise 
linear situation is 0(h1/2).) Another consequence is a global L,-estimate of order 
0(h'/2) in the presence of typical crosswind and downwind singularities. 

We shall consider the model problem of finding u = u(x, y) such that 
(1.la) - 8uXX-EUyy+ +u + u=f iniQ. 
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(11b) u = 0 on M, 

where i is a bounded convex domain in the plane and 8, - are small parameters. Its 
numerical solution is sought in a family of finite element spaces Sh C Ho(Q) which, 
for simplicity and concreteness, we take to be piecewise linear functions on a 
quasiuniform family of triangulations (of subdomains) of U. Exact hypotheses are 
given at the end of this introduction. 

Our interest is in the singularly perturbed case and we assume throughout that 

(1.2) 8 E < h. 

Hence, we do not seek to resolve boundary layers or other singularities, but rather 
aim for numerical methods in which singularities do not pollute into regions where 
the solution is smooth. The ordinary Galerkin method, i.e., finding uh e Sh such 
that 

(1.3) 3(ux x) + c(uy 
h ) +(Uh + Uh, X) = (f X) for X E Sh, 

is well known for its severe pollution. (Here (v, w) denotes the standard L2-inner 
product over U.) 

The streamline diffusion method for (1.1) is, in essence, derived by replacing the 
test functions X in (1.3) by test functions 

(1.4) X + hXx, XESh 

Ensuing terms of the form yh(Duh, Dx) D = a/ax or a/ay, -y = 8 or c, would 
have to be given a suitable interpretation and, in our piecewise linear setting, we 
shall for simplicity of analysis discard them. (Their formal order is O((8 + -)h) < 

O(h2), which is below the asymptotic rate we can ever hope for.) 
Changing also the crosswind diffusion - artificially to -mod, the numerical method 

is thus to find Uh e Sh such that 

(1.5) B(uh, X) = (I, X) for X E Sh, 

where 

(1.6) B(u, X) - 8(ux, x) + Emod(UY, Xy) + (uh + uh, x) 
(h + 8)(Uh, Xx) + mod(U> XY) +(I - h)(u, X) + (Uh, X). 

The "stabilizing" term h (u'h, x ) added in the streamline (wind) direction is an 
important feature of the method and, indeed, gives it its name. 

The artificially modified crosswind diffusion '-mod is given as follows: With 
0 < -,O < h a crossover point, typically dependent on h, 

(1.7) k Ec0 for <C o. 

In the traditional streamline diffusion method, Cmod E. 

We next briefly describe how (1.5) differs from the continuous problem (1.1). An 
easy calculation (differentiate (1.1) with respect to x, multiply by -h, add to (1.1) 
itself, and integrate some by parts) establishes that the solution u of (1.1) satisfies 

(1.8) B(u,) = (f, A) + Per(u, A) for p E Ho(Q) 
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with the perturbation form given as 

(1.9) Per(u, ) =h(6ux + Eu ,IpX) + Eper(Uyy j) 

Per,(u,p) + Per2(uT), 

where 

(1.10) ~ ~ ~ f0 fore>, ec0, 
(1.10) eper ((eco - e) for e < co 

Formally, these perturbation terms are of order hS + he + -per. 

The question naturally arises as to what crossover point eco to choose. Here we are 
guided by a careful analysis of the numerical crosswind spread in (1.5). By this we 
mean the following: How far in the crosswind direction do data f significantly 
influence the solution? In the continuous problem (1.1) the solution at a point 

(xo, yo) is appreciably influenced by f only from within an e1/21n(1/e) neighbor- 
hood in the crosswind direction and from within 8 ln(1/8) in the downwind 
direction, cf., e.g., Eckhaus [4], Eckhaus and De Jager [5] and Lions [11]. 

KF / 1/2 ln(1/E) 

||KS ln(1/8) 

FIGURE 1.1 

Influence of data in the continuous problem. 

It is known, cf. [8], [9], that the numerical crosswind smear is limited to 
h1/21n(1/h) for any choice of eco < h. We prove in Section 2 that it is actually 
restricted to 

E1/2 ln(1/h) for h3/2 < emod < h, 

(1 .11 ) h 3/2ehmod2 ln(1/h) for h2<e <h3"2 

h1/2 ln(1/h) for e < h 2 

see Theorem 2.1 for a precise statement. 
Since one can hardly expect less crosswind spread in the numerical scheme than in 

the continuous problem, and since excessive crosswind spread (in the precise sense 
of Theorem 2.1) seems in practice to imply excessive smearing of fronts following 
characteristics (in the limit of zero diffusion) of (1.la), cf. Brooks and Hughes [2, 
Figure 3.7, p. 219], we choose the crossover point as 

(1.12) e h3 
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This choice minimizes (1.11) when E < -, For ? < h3/2, then, crosswind smear is 
limited to h 3/4 ln(1/h) << h1/2 ln(1/h), while for ?> h 3/2 the numerical method has 
essentially the same spread as the continuous problem. 

Theorem 2.1 also shows that data f downwind only influence the numerical 
solution upwind within an h ln(1/h) distance; this is known from [8], [9], so that this 
part of our investigation is not new. (For completeness we include it in our proof.) 
In the continuous problem the corresponding distance is 8 ln(1/8), cf. Figure 1.1, 
but in the numerical scheme nothing can happen on a scale less than h. 

In Section 3 we use the results above on crosswind and downwind smear in the 
numerical solution (1.5), with the choice e- = h3/2, to show the following pointwise 
error estimate with local smoothness assumptions. At a point (xo, yo) we have 

(1.13) j(u - uh)(x ,y)j_ Ch5/4 ln3/2 (1/h) 

provided 3uXX + eUyy E L I(Q), VU E L1( i2), f E L2(Q) and provided u is twice 
continuously differentiable on 00, the following region extending upstream from 
(xo, yo), cf. Figure 1.2. 

> t ~~~~~~~~(Xo7,V0) 

\ /~~~~~~~~~~~~~~ 2K,-'/2d in(1/h) 

2Kh ln(1/h) 

FIGURE 1.2 
Influence on the error in the numerical solution. 

Singularities in (1.1) can typically be expected of the form, with some a, b, 
"exp((x - a)/8)" in the downwind direction and "4exp(-Iy - bj/El/2),, in the 
crosswind direction. Hence our global assumptions for (1.13) are reasonable in 
practice. 

The previously best known pointwise error estimate in smooth regions in our 
problem for general meshes is O(h1/2 ln1/2(1/h)), following from an L2-estimate of 
0(h3/2), [8], by Sobolev's inequality on Sh. 

The perturbations off (1.1) in the numerical scheme (1.5) are described in 
(1.8)-(1.10). The term Per, is of order h(3 + ?) s h2, while for ? <h3/2 the 
crosswind perturbation Per2 is of order h3/2. (This motivates our calling the 
crosswind diffusion Emd artificial.) Methods for including these perturbation terms 
in the numerical method, with higher-order spaces Sh, have been considered in [8], 
[12] for Per1, and for Per2 in Axelsson and Layton [1]. 

We next describe two corollaries of our main results. Whereas the continuous 
problem (1.1) has a maximum principle, so that IIUIIL < CIf IIlL , for the numerical 
problem we can only prove a weaker result, IIuhIIL s Ch1/4 1n3/2(1/h)IIf IlL , in 
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Corollary 3.5. For a typical singularity following a characteristic and typical boundary 
layers we find in Corollary 3.6 that for the global error in L1, with (1.12), 

jjU - U jjQ ChL /4c(<)d1n5!2(1/h), 

which for E < h3/2 translates to an O(h1/21n5/2(1/h)) error estimate. 
Our results are probably not sharp. Numerical experiments by Pitkaranta [13] and 

by ourselves suggest that the pure streamline diffusion method, i.e., -co = 0 so that 
Emo , has better crosswind spread than h7/2 In(1/h) for low c, and one may 
guess that it is h3"/4 In(1/h) also for Eco < h3"/2 in (1.11) (or, h"2/31 n(1/h); the 
numerical experiments vacillate somewhat, in particular when the characteristics are 
sharply curved). Similarly, one may guess that (1.13) should be replaced by an 
O(h3/2)-estimate, or even 0(h2) if one is daring. Also, our L1-estimate above is 
curious in that it gets worse as E increases above h3/2, while the typical singularities 
in (1.1) then attenuate. For the possible root of this possible lack of sharpness, see 
Remark 3.4 below. 

We conclude this introduction by describing our hypotheses for the piecewise 
linear spaces Sh C Hoj(Q) and listing some well-known results for them that will be 
used in the sequel. Let 7h = {Tih }NI be a family of edge-to-edge triangulations of 
Qh C O with the parameter h N -1/2 uniformly comparable to max,(diam( T1h)) 

and 

Sh ={X e( c 
?(oh), X = 0 onagh , X I h linear in x and y}. 

When necessary, such functions are extended by zero to U. Here, with M a constant, 

(1.14) max (dist(agh), x) < Mh2 
xeau 

as any family of triangulations used in practice would satisfy. The family is assumed 
to be quasiuniform, so that (here and below we continue to use M for various 
quantities associated with the family Sh), 

(1.15) diam(ih) Mh M2p(ih), i= ...,N, 

where p(T) denotes the diameter of the largest inscribed disc of T. 

With (1.14) and (1.15) we have the following: For Int(v), the interpolant of v, 
there holds for any triangle , 

(1.16) hllV(v - Int(v)) L (T) + h1v - Int(v) L(r (T) Mh2 D |Dv ILp(T) 
IjyI=2 

We shall also need an inverse estimate for X E Sh: 

(1.17) f' X W (r) < Mh -l-2(1/q- l/P) X 11 Lq(Th) 

for / = 0,1 and 1 < q < p < oc. Finally, with P0 the L2(Q)-projqction into Sh, we 
have for any domain D C Oh, 

(1.18) hjlV(v - P0V)IIL.(D) + ||V - POVIIL (D) < Mh2 IIVIk2(D+) +Mh V11L2(Q), 

where D+= (D + Mh) n U. This is easily derived with the techniques of Douglas, 
Dupont, and Wahlbin [3]. 
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2. Crosswind (and Downwind) Smear in the Numerical Method. For a domain D 
we set 

(2.1) [l[v]] D h1/211vX ID + CIKOdIIVYIID + IV lI D 

where II VID = l1VI L2(D). Recall that M denotes various constants related to the 
family Sh, and recall also the notation (1.4) and (1.6). The following is the result of 
this section. 

THEOREM 2.1. For any s > 0 there exists a constant K = K(M, s) such that the 
following holds: Let Oh E Sh satisfy B(uh, X) = (f, X) for X E Sh and let 

(2.2) 920 = {x AA, B1 Iy < B2} nl 2, 

(2.3) ={ x < A + p ln(1/h), B1 - a ln(1/h) yB2+a ln(1/h)} n , 

where the downwind spread is p = Kh and the crosswind spread a is given by 

(Kefmod for h3/2 E 8mod < h, 

(2.4) mo = (Kh3/2 d2 for h2 Cmod < h3"2 

Kh1"2 for Emod < h2. 

Then, 

(2.5) [[u h]] Q0 s< Klif IIQ+ + hsilf 11. 
The rest of the present section is devoted to the proof of this. For typographical 

reasons we write U for u'. The proof will be executed in detail for h2 mod < h; 
the case -mod < h2 is contained in [8], [12], cf. Remark 2.3 below. 

Following [8], [12] we start by introducing a suitable cutoff function. Let g(s) E 
W 2(_ c oX) with g(s) = Is I for Is I > 1 and set 

(2.6) +(t)= f exp(-g(s)) ds. 

Then, as is easily checked, there exist positive constants c and C such that 

(2.7) c < + (t) < C for t < 1, 

+(t) = e-t for t > 1, 

+2.8) 
~'(t) < 0 all t, 

(2.8) | +'( t ) I + I +"(t) I < Cl + (t) I all t, 

|+"V(t) I -C+'(t) all t. 

Further, with the relative oscillation on a domain D defined as 

RO(D, v) = max I v(x) I/ min i v (x)|, 
xcD xc-D 

on any interval I of length 1, 

RO(I, 4) + RO(I, 4') < C. 

Define now 

( y ) A(x -A ) B( a-) (y - 
B2) 
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From the properties above it follows that co, < 0 and that 

(2.9) ID2aD I< Cp-ad-aO fora+/3<2, 

(2.10) DaDc I,< -Cp- a +'a - flo for a > 1, a + f< 2, 

RO(Tr, co) and RO( T, cox) are bounded independently of h 

(2.11) on any element T. 

From (2.7) and (2.8) it is clear that Theorem 2.1 would obtain from the following 
result: Let 

(2.12) L max((h/p)'/, h3m2/(a Jod), E mod/2) 

and 

Q(U) ((h + U)I IIL ? lull2 
(2.13) 212 21/2 

+ I U 112 + (1 - h) ( Xl Xx l) 2U 2) 

Then for L sufficiently small, 

(2.14) Q(U) < Cjqf II. 
The reader may be interested in following the proof without prior knowledge of 

the choices of p and a. If so, we remark that we assume h < p < a throughout the 
proof. 

We shall need the following "superapproximation" result which follows from 
(1.16) and (1.17). Let 

E = o2U - Int(cw2U). 

LEMMA 2.2. There exists a constant C = C(M) such that for U E Sh, 

(2.15) h1 ,c-1VE 11 + 11 ,-'E 11 < Ch172LQ(U). 

The proof of this is postponed until the end of this section, and we proceed to 
prove (2.14). Note first that 

0 = ((,U)x, Xu) = (CoUxMU) ?(ux,Ec2u). 

Hence, using (1.5) for X = Int(co 2U) E Sh, 

Q2(U) = (h + 8)(UxUCo Ux, ) + Cmod(CUIoU L) 

+ (coU, wU) -(1 - h)(coxwUw U) 

= (h + 8)(ux,(o2u) - 2ocoxU) + e d(U (&2U)v 2cotvU) 

(2.16) +(USo2U) +(1 - h)(Uxo2U) 

= B(U, &2U) - 2(h + 8)(oUx, ,&xU) - 2Cmod(WUv GCOU) 

= B(U, E) -(fE) (f,(w2U)) 

2(h + 8)(,Ux~,wxU) - 2Emod(oUvy ICOU) 

I1 + * +I5 
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Here, by Lemma 2.2 and since ?mod < h, 

I= (h + 8)(WU w-Ex) + -mod(oUy, W-1Ey) 

+ (1-h)(&,U,&-1E) +(WU -1E) 

(WUX1 + 8d | cU|| + IlWUI )(hIIW-1VEI| + IlW-1EII) 

12 (h1! WU I + 4K/dII Uy I(cmod/h)"'2 + h1"2!!LU!)CLQ(U) 

< CLQ2(U). 

Again using Lemma 2.2, cf. (1.4), 

I2 < IWf !!(ko -1E!I + hI I-1vE I) IWf 12 + ChL2Q2(U) 

Further, by (2.9), since p > h, 

I3 1! LWf 1!(ttwUtt1 + 2httWxU t + htt wUx ) < 1ttcf I(CtWUt? + hf WlxUt) 
I Q2(U) + Cq ff1f2. 

By (2.10), 

I4 < 2(h + 8) 1t cUx 11 1! !xU || <, 8 |WUb ||2 + Ch|| xU 112 

h || bi2 + (h)"2 
(W!Lx|)"12U 

2 <( + CL )Q2(U). 

Finally, from (2.9), 

Cc 0 ~~~~~~2 C,-o ,OU (11LQ2U2 5s < -|l@U yl WU < 8 | + 2+ CLQ 2(U). 

Using these estimates in (2.16), it is clear that (2.14) follows if L is small enough. As 
we have already noted, this would prove Theorem 2.1 in the case h2 mod < h. 

It remains to verify Lemma 2.2. On any triangle T we have by (1.16), 

(2.17) hI IVE 11 + 11 El Mh2 ? lI DY 2U) lIT. 
IyI =2 

Since D2U = 0, it follows by use of (2.9) that 

D2(W2U) I < I(&2) UI+ 2(2)YUY I < Co-21 2U I + Ca-u1 2Uy. 

For the second mixed derivative, 

Dx v(c2U) = 2 xWyU + 2coxyU + 2coxUy + 2coyU, 

we use (2.9) and (2.10) to arrive at 

| DXDy(L2U)| Ca-1 IWxU I + CIlxUY I + c-11 @2UX| 

Similarly, 

D2( 2U) I < Cp-1 oXU I+ Cl W@xUx . 
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Inserting the above in (2.17) and employing (2.11), 

h| 1VE||, + 11 E||, 

(2.18) < C[ h 2a U + h 2 + h21 AiXUl + h 

+ h2 -l UITt + h2p 11wXU 11 + h2I WxUX Ti 

We proceed to operate further on the last five terms. By (2.9) and since a > h, 

h 2a -II WY II ' 1< Ch 2a - lp- 1/2l( WI WX 1) 1/2U 

<U Chp-112 (WIWxI)I/2U| 

By the inverse property (1.17), and as above, 

h2| IXxUyI' |< Chl oXxU 11 < Chp-112 (coIcXX)I'2u 

and, since a > p, 

h2U-111 oU Ch 2p- 1 1 X ||2 

Finally, as for the first term treated above, 

h2p-1ttwxU IIT < Chp-172 (WIWxI)I/ T|u 

and by (2.9), 

h2| xU 11,, ' Ch2P-l| U 1 

Inserting these estimates into (2.18) and rearranging, 

hI w-u1vE 1j + !! w-1E !!T 

< C[h 2p-l !uX(I7 + h2a1poUy ?+ h 2u -2fUf! 

(2.19) + hp-l2| 1aa1 U | 

Ch 1/2 [(h/p)h 1/21 + ((h 3/2/U/2d )) E/2du 

+ (h 3'2/a2) !! COU IIT + (hp ) 1/2 |( Co Ixx. 1)2 U |T] 

Since L > h 3/2u -2 we obtain (2.15) upon squaring and summing over all elements. 
This completes the proof of Lemma 2.2. 

Remark 2.3. In the case -mod < h2, take 

L = max((h/p )1/2 ,h1/2 - I 

It is then easily seen that Lemma 2.2 still holds. The only change in the proof occurs 
in (2.19), where the term h2 1II 1,UyIl is now bounded by Chu 1I1WUIIT from the 
inverse property (1.17). The rest of the proof of Theorem 2.1 is as before. 

Remark 2.4. By a more complicated argument one may show that (2.5) holds in a 
completely local fashion, viz., 

[[U h]] Q. < Kl|f I|Q, + hSIIUh JII+ 

This may be of value in analyzing very rough flows. 
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3. A Pointwise Error Estimate with Local Smoothness Assumptions. Let (xo, yo) be 
any point in Q and let K be as in Theorem 2.1 (for s = 6). Set in this section 

(3.1) O= x < xO + 2Kh ln(1/h), I y-yo 2KE/2d ln(l/h))} n ., 
cf. Figure 1.2. 

THEOREM 3.1. Assume that c, = h 3/2 and that 

IIU !1 2(n) + UXX + EUVyIL () + [VUIL1(Q) + <f L2(Q) < Q. 

There exists a constant C = C(Q, M) such that 

(u - uh)(Xo, Yo) Ch5/41n3/2(1/h). 

Proof. Let G = G(xo?Yo) E Sh be the discrete Green's function, 

(3.2) B(X, G) = X (x0, yo) for X E Sh 

With Pou the L2-projection into Sh, we have 

(uh - Pou)(xo, yo) = B(uh -Pou, G) = (f,G)-B(Pouv G) 

(3.3) = (f, G) + Per(u, G) - B(Pou, G) - Per(u, G) 

= B(u - Pou,G) - Per(u,G). 

Let QO c Q be as in (3.1), with 2K replaced by K. We claim that 

(3 .4) ||G || 1 (QQ0 
C 
Ch3. 

To see this, let 6h be a linear function on the element T containing (xo, yo) such that 

(86h X) = X(xo, yo) for X linear on T, with 6h vanishing outside T. Then (3.2) is 
equivalent to B(X, G) = (Oh, X) for X E Sh, so that by the counterpart of Theorem 
2.1 for the adjoint problem, which has the wind direction reversed, 

< Ch 6 61L || G IL2(Q\Q0O) <' ChS h II L2' 

Since the dimensions involved in (3.1) are much greater than h, and since G 
vanishes outside Qh, we may assume that Q \ Q is a mesh domain. Then (3.4) 
follows from the inverse property (1.17), since clearly II L2 h Ch IL. 

Now let BD(V, p) denote that the integrations in (1.6) are extended only over the 
domain D. Then 

B,\,'( U - POu, G) u (|u| w + 11 Pou 11 wl) 11 G 11 wi(Q\Q0) 

Since by assumption lull wl < C, and since by the inverse assumption (1.17), 

|| POU 11 W1l 
- CI P0U || W2 Ch Pou l! < Ch u || < Ch1, 

we get from (3.4), 

(3.5) BQ\Q( (u - POu, G) < Ch2. 

For the remaining part of B we have 

Bo,(u - Pou, G)= [(h + 6)(U -Pou)xGx + Emod(U -PouU)yGy 

-(1 - h)(u - Pou)Gx +(u - Pou)G] 

< c hIIv(u - POU) IL. (Qnh) +IIU - POUIIL (QQh)] I 
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where 

I =!IIGx 11 Li (l) 
+ Cmod h IGY IL(2') + 

I|G||L(0) 
Since meas(g2') < C4'Ld ln(1/h), we obtain by Cauchy-Schwarz' inequality, 

I < CC/l4dn1/'2(1/h)j, where= I!GXl + mod h'-jG ?1 +!!Gh!, 

so that using also (1.18), 

(3.6) BQQ(u - POu, G) < Ch 2E/d ln1/2 (1/h) f. 

We next estimate the perturbation term Per(u, G) Per,(u, G) + Per2(u, G) in 
(3.3), cf. (1.9). For the first part we have by (3.4), using again Cauchy-Schwarz' 
inequality, 

Per,(u,G) = h(Suxx + -uyyGx) 

(3.7) < Ch 2l U h112(20)I1 GX 1L1(0) + ChilhaUX + EUYY1ILj(Q)h3 
Ch 21/4d 1n/2 (1/h) 11 G 11 + Ch 4, 

and for the second, after integration by parts over 2 \ QO. 

(3.8) Per2(u,G) = Eper(UyyIG) = Eper[(UyyI G) 2&0 - \2 uYGY + I0 uYG 

p C?Per 8mod pn'72 (1/h)j| G| + C?per h3, 

where Cauchy-Schwarz' inequality and (3.4) were used together with our assump- 
tions on u. 

Collecting (3.5)-(3.8) into (3.3) and using again (1.18) and the triangle inequality, 

(3.9) (U - Uh)( xo YO)| Ch2&<gOn1&/2(1/h) [| GX 11 + modh ? h1GY||1G1 

+ Cfper 1/d ln /2 (1/h)|IG || + Ch2. 

We now use the following lemma whose proof will be postponed. 

LEMMA 3.2. We have 

||Gx 1 Ch -3/47-1/4 ln(1/h), 

||IGY II Ch /-?m/4 _;lnlh) 

JIG 11 Ch' /4 c ln(1/h). 

Admitting this lemma, we have from (3.9) that 

(u - U )(xo, Yo) I < Ch2 <4 
ln3/2(1/h)[h 3/ 4mpO/j4+ h 574eid + h 1/4 

+ C, pE 1/4 ln3/2 (l h) h -1/4E-1/4 per mod mnod(1h 

Ch5/4ln3/2 (11h), 

since h5-/4e_ 'L4d < h-3/4e_- /'4 and since -per h3/2 in the present case ec - h3/2, cf. 
(1.10). This would conclude the proof of Theorem 3.1. 

It remains to show Lemma 3.2, and for this we shall need the following variant of 
Sobolev's inequality. 
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PROPOSITION 3.3. For v E H(2(Q) andp > 2, 

|| V ||L |V |L || V 1|/2 P meas( Q)I/P. 

Proof. Our proof is a minor modification of a standard proof of Sobolev's 
inequality. Let w E W'0j(N). Then 

IW(X Y)VA 1 f |w,(x',y) dx' 

or 

|W(X, Y)LA f 
2 W(x,y') dy'. 

Thus, 

|w~x~y)| 41 |Wx, (x A )dx'| i|wy(x, y') dy . 

Integrating (and removing the primes), 

Jf | w(x, y) |2dxdy (JJ4 wx(x, y) I dxdy)( f w, (x, y) dxdy). 
After a density argument we may apply this to w = IvIP, so that Dw = 

p I v I1 sgn( Dv). Using Cauchy-Schwarz' inequality, 

1l Ivl~pAP4 ( IVIP IV )( IVIP 1VI 

<1 P2 1 Vx 1 l 1 1 V 1 V12(p -1). 

By Holder's inequality, 

|| IV I(P ) <11 V 112(p- lmeasf g)1 

and hence 

11V1 Pp< 11 Vx 11 11 Vy 11 11 V 112(2p ) Ima (~ /P 
Lv2} L~~~~ffy~~~ p 4meas(~)/ 

or 

1v L2P <1 vx 11 11 vy1 
2 

meas(U)"/. 

Changing 2p to p completes the proof. 
We proceed now to prove Lemma 3.2. We have 

(3.10) (h + 
8)IIGXII2 + 'mod II Gy II + IG II = B (G GG) = G (x 0, yo). 

By the inverse estimate (1.17) and by Proposition 3.3, 

G (xO yO) < Ch -I2pII G II Lp < Ch - 2pp II GX 11 || GY || 
Choosing p = ln(1/h) and A = (hh/Cmod )1/4 below, 

G(xo YO) < Cln(1/h)(A1Gx| + 1Gy 'G1 ) 

< C ln(1/h)(A AhGx h1 G + A-1GY11) 

= C ln(1/h )( Ah -l/hl/ IGXJ11 + A- Emo0/d modII Gm | 

< 2 h |I GX 11 + 2 2mod|Gy| + Cll2(l/h)(A2h-1 + nod A-2), 
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so that from (3.10), 

hf| Gx 11 + 2mod Gv 2 + 2G | C ln2(1/h)(hcmod ) 1/2 

which proves Lemma 3.2. 
Remark 3.4. In the continuous problem it is easily seen (using the maximum 

principle and Fourier analysis) that uIGh1 < Cc-114 for the corresponding Green's 
function. Regrettably, we are a factor of h -1/4 ln(1/h) off this estimate in the 
discrete case. (An early and quite interesting example of the Green's function in this 
problem is given in Gore [6, pp. 574-575]. The exponential decay properties are 
clearly seen from the measurements of ashfall levels.) 

We next give two corollaries of our main results. The first is analogous to 
Theorem 2.1 in a pointwise setting. 

COROLLARY 3.5. Let -C - h3/2 and let Q be as in (3.1). Given s > 0, there exists 
a constant C = C(M, s) such that 

Uh(X0 Y ) I,< Ch-1/4In3/2(1/h)IIf L%(Q2) + hsJ|f |IL(U)- 

In particular, 

|| 
UhI I| 

Q Ch - 1/4In 3/2 
(11h )J 

|| 
II1L (U)- 

Proof. With G the discrete Green's function, (3.2), we have using Cauchy-Schwarz' 
inequality, the inverse estimate (1.17), the obvious higher-order analogue of (3.4), 
and Lemma 3.2, 

uh(X0, YO) = B(Uh ,G) = 

V If G)QO I + IVGQQ I 

< C||f ||L (Q0)ln"/ (1/h) m/od IG + ChsI f IILJO) 

CIf IIL (Q20)ln (1/h)h / + 

This proves the corollary. 
Finally we give a global Li-error estimate. For this assume that Us c Q is a 

domain where u is smooth and that otherwise u has typical singularities of 
exponential type. More precisely, assume 

(3.11) |U 2(Q?) + 4|8 Ux + EuVVIIL1(i) + 11VUIILI(Q) + ?lf IILO < Q 

Further assume that the domain where u may be rough, i.e., Q\Q5, is small. 
Typically, if u has a few singularities of exponential type, then meas(Q \ Q5) 
< Q max(8 ln(1/8), c1/2 ln(1/E)). Our formal assumption is that 

(3.12) meas(?Q\?Q5) \ Qc_12d ln(1/h). 

COROLLARY 3.6. Assume (3.11), (3.12) and that CO - h3/2. There exists a constant 
C = C(Q, M) such that 

u h L1~)~Ch-114E'fl2gInf5/2 (1/h). ||U - U ||LI(Q) <-C m/odln/(h) 

In particular, for E < h32, 

||u - U 
h 

L (Q) < Ch112In5/2(11h) 
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Proof. Clearly, Theorem 3.1 gives the required estimates on a subdomain Q' of Q 
with 

(3.13) meas(Q \ Qi) < C1/j2d ln(l/h). 

Since f is bounded, so is u by the maximum principle, and hence on ? \ Q, by 
Corollary 3.5 and (3.13), 

U - U + u L())meas( \?') 

,. ch In ( 1 h )Emod, 

which proves the desired result. 
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